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Abstruct- A new neural prosthetic decoder architecture is 
presented which uses a hidden Markov model of typical arm 
movements to assist the reconstruction of intended trajectories 
from an ensemble of neural signals. The use of such a model 
results in a decoder which is robust to fewer or smaller neural 
signals. With limited information, the average error of the 
reconstructed trajectories produced by the robust decoder is half 
of that produced by the standard linear filter approach. 
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I .  INTRODUCTION 
Recently, there has been a surge of interest in helping 

patients who are paralyzed or have other peripheral nervous 
system ailments by tapping into the undamaged motor centers 
to control prosthetic movements ([l], [2], [3]). In an ideal neu- 
ral prosthetic interface, intended movements would be decoded 
from the combined signals of a large number of individual 
neurons, and then generated through muscle stimulation or 
other artificial means. In this paper, we address the decoding 
of reaches-goal-directed arm movements. 

Current neural prosthetic interfaces are limited primarily by 
the amount of neural information, specifically the number of 
neurons, that can be interfaced through chronically-implanted 
electrode arrays. Earlier studies have suggested that accurate 
arm-movement reconstruction could be achieved by using 
simple algorithms to decode signals from approximately 500 
neurons ([I]). While the advances of electrode technology may 
achieve interfaces on this scale within the decade, the further 
advance of prosthetics research into hand and finger motion 
will again present the challenge of limited neural information. 
Thus, what is needed is a robust decoder architecture that not 
only works well in the many-neuron regime, but still provides 
useful functionality when neural information is limited. 

In this paper we introduce a scheme for improving neural 
decoder performance by using a hidden Markov model of arm 
trajectories to influence reconstruction. 

A. Goal-Directed Movements 
The basic premise of our decoder is that reaching move- 

ments are primarily goal directed. In other words, intended 
arm movements can be represented by a transformation from 
a point in goal space to a multidimensional trajectory in time. 

Here x is the goal location in some representational space, 
and n(t) represents variation in repeated movements to the 
same goal due either to internal noise or unidentified intention. 
C represents external constraints on the reaching movement 
(for instance an obstacle that must be avoided). Alternatively, 
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associated neural signals 

Variation in observed movements and a typical realization of the 

the external constraints can be enfolded in the variation term, 
so that complex movements would be represented as "noisy" 
simple reaches. The black lines in Fig. 1 depict the average 
of many observed trajectories (the gray lines) to the same 
endpoint goal ( 7 ( t ;  x)), and variation in these trajectories 
(n(t)) is apparent. 

B. Robust Neural Decoding 

In the prosthetic application, the intended movement cannot 
be directly observed. Rather, the decoder has signals from a 
large number of individual neurons which each encode some 
aspect of the intended movement. A good statistical character- 
ization of these signals has proved to be the inhomogeneous 
Poisson process, in which an unobservable rate parameter 
controls the neural output ([4]). It has further been shown that, 
in motor cortical neurons, this mean firing can be reasonably 
well modeled as depending on the speed and direction of the 
intended movement. 

The mean firing rate of cell k is an affine transformation of the 
intended trajectory in velocity space, v. In healthy individuals 
some neural signals precede the corresponding arm movement 
by a delay, typically on the .order of 250 ms ( [ 5 ] ) .  Typical 
spike-sequences produced by a neuron ensemble are shown at 
the bottom of Fig. 1. In a prosthetic system, the movement 
decoder has access to infoimation about the upcoming arm 
movement at least a quarter of a second in advance of the 
time the user expects it to take place-a decoder which 
does not take full advantage of this large amount of advance 
information will fail to achieve maximum performance. 
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Previous neural prosthetic decoding systems have been 
either excessively general or restrictive. Many of the cur- 
rent research approaches ([l], [ 2 ] ,  [6]) decode intended arm 
movements by filtering a window of neural signals to find 
the incremental change in hand state (i.e., the velocity or 
position at the next time step). This approach is equivalent 
to modeling arm movements as a random walk in space, to 
which observed movements, especially reaching ones, bear 
little resemblance in practice. Alternatively, a stereotyped 
movement-based decoding system has been proposed ([7]) 
which strongly assumed that any variation in the trajectory 
of a reach was due to noise in the neural signals, rather than 
allowing for variations in the actual intended movement. 

Thus, the goal of the robust neural prosthetic decoder is to 
use information about the time course of typical movements 
to aid, without over-constraining, the estimation of the desired 
trajectory from a noisy ensemble of neural signals related 
to it. For this study, we choose to limit ourselves to one 
dimensional trajectories, and simple neurons which fired as 
an inhomogeneous Poisson point process whose rate was an 
affine transformation of arm velocity. Though the algorithms 
will be discussed in this specific context, the essential concept 
can be extended to multiple dimensions and more complicated 
neural signaling models. Further discussion of these extensions 
can be found in the final section. 

11. DECODER ALGORITHM 

A .  Basic Linear Filter 
In the one dimensional, velocity-tuned neuron case, the 

optimal decoder can be expressed in a Bayesian sense. Given 
the observed neural firings from an ensemble of neurons, 
f, = [f:, f,", . . . , f:] , up to discrete time t + A, T 

t+A 

f, = .U 
,=-, 

where A represents the amount of advance neural information 
available to the decoder, the a posteriori distribution of the 
average velocity at time t is 

However, as discussed above, most current approaches to 
decoding intended movements take an incremental or win- 
dowed approach. The optimal windowed decoder found in 
current approaches is obtained by using only the neural signals 
observed over a time interval, i.e., substituting ft for fm 
in equation (3). Furthermore, current windowed approaches 
also make no assumption about the distribution of ut ,  leading 
to various approaches (linear filter, neural network), which 
approximate the maximum likelihood estimate 

6t = argmax{Pr(ft I v)}. 

fl" = P(vt + 0) + nk  

(4) 

If the firing rate of the kth neuron in the ensemble is modeled 
as 

( 5 )  

200 . . . b~rmde'l7,",e',"~ 

0 0 0 5  0 1  015 02 ' 025 03 035 
-0" 

f (5) 

Fig. 2. . Intended trajectory and reconstructions using traditional linear fi Iter 
and new robust methods . 

where n: - (0, a2), then with no prior information about 
ut, the maximum likelihood solution is just the average of the 
affinely scaled f/'s 

The decoded arm trajectory at any point in time is then 
the sum of all the 6t's up to the current time. Fig. 2 depicts 
a sample trajectory with the results of this linear filter recon- 
struction with the signals from 10 and 100 neuroiis captured in 
10 ms windows. Neurons were modeled as described above, 
with their finng rates scaled so that the maximum rate was 
50 per second and the minimum was zero . One essential 
characteristic of this class of simple decoders is that they 
perform poorly when few neural signals are available, but scale 
well with the number of neurons interfaced, as is apparent in 
the figure. Note that varialion in the number of neurons and 
the dynamic range of the spike rate are both measures of the 
amount of neural information available to the decoder. While 
the analysis in this work is done relative to the number of 
neurons interfaced, it could equivalently have been done by 
increasing or decreasing this parameter. 

B. HMM Trajectory Reconstruction 
We can model the velocity of the hand at discrete time t ,  

wt,  as being the output of some unobservable "state" of the 
model system, st E (41, q 2 ,  . . . , q M } .  A hidden Markov Model 
(HMM) is a special case of the general class of latent variable 
models, which share the basic similarity that observed data is 
produced by some unobservable stochastic process. The HMM 
has the special property that the progression of states in time 
is a first-order Markov process, or 

Pr(st+1 = qJ I S t ,  St -1,. . = P r  (%+l = 4, I . t )  

- - aa,. 

Furthermore, the observed data at time t ,  Ot, depends only on 
the current state, that is 

Pr(0t 1 st, st-1,. . . )  = P r  (0, 1 st = q 3 ) .  

Thus, the HMM is fully specified by three parameters, 
the matrix of transition probabilities, A = {a,,}, the state 

2080 



dependent output density, bj = P r  (Ot 1 st = q j ) ,  and the 
initial state distribution, rj = P r  (so = q j ) .  

To model hand velocity trajectories, we constrained the 
general HMM. First, the states are connected in a “left-right’’ 
manner: in time, a state can only transition to itself, or a higher 
indexed state. In other words, aij = 0 for all i < j. Second, 
the state output density is modeled as Gaussian, 

(7) 

The model parameters, { A ,  b, a}, are trained using the Baum- 
Welch method with a large number of reach trajectories (see, 
e.g., [81). 

Given our hidden Markov model of trajectories, we can 
rewrite (3) as 

(8) 
st 

= C P r ( u t  I s t , fm)  Pr(st I fa). 
S t  

If Pr(ft I w t )  is as defined in ( 5 ) ,  then 

P r  (ut I S t ,  fm) = P r  (ut I S t ,  ft) 

- - W f t  I vt)Pr(vt I S t )  

J Wft I ut )  Pr(vt I st)dv 
“ ( v s , , C t ) .  

The covariance of this density, Ct, is unimportant to the 
derivation. The mean, v,, is 

e2 
vat = ps, + St (Gt  - Ps,) , 

a:, + g (9) 

where Gt is as defined in (6), and N is the number of available 
neurons. Pr(s t  I foe) can be evaluated using the fonvard- 
backward algorithm using modified HMM parameters. The 
conditional mean estimate is then simply the mean of (8). 

E (ut I fm) = vs,,t P r  (.t I fm)  (10) 
st=q 

To maximize our ability to match observed trajectories, 
we use an ensemble of HMMs, each trained on a subset 
of movements, selected by some clustering criteria (here we 
divided the training movements using the endpoint extent). 
The Bayesian estimate can then be further extended across 
the separately trained HMMs. Thus the final robust estimate 
is 

E (ut I fm) = E (ut I m, fm) Pr (m I f m ) ,  (1 1) 
m 

where E (ut I m, fm), the a posteriori estimate given model 
m, is computed in (10) and P r  (m 1 ft)  is also found through 
the forward backward algorithm. 

Thus, the basis of the refined HMM decoder architecture 
we propose is quite simple. The movement decoding is done 
in two stages. First, the neural signals are combined using a 
classic direct approach to estimate the current physical state of 
the arm. In Fig. 3, this is represented by the “Linear Decoder” 
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Fig. 3. Robust decoder architecture 

block (though in principle this estimator need not be linear). 
Then, the forward-backward algorithm is used to evaluate the 
best fit of the HMM states to this initial estimate. Finally, at 
each point in time the conditional state densities are used in 
conjunction with (1 1) to calculate the robust estimate. 

As discussed above, in the simulations presented in this 
paper, the neurons are assumed to signal as an inhomogeneous 
Poisson point process. Thus, the model presented for neuron 
outputs in (5) is incorrect, and optimal decoding methods 
based on it will be suboptimal for Poisson neurons. However, 
as we show, significant gains can still be made using the 
approximation of additive noise. In the case of a doubly 
stochastic Poisson process (as the output of the model neurons 
are), the mean and variance are well defined. Thus, for the 
Gaussian approximation, the mean firing rate will still be as 
defined in (9, 

(fl”) = P ( P S t  + a) ,  
and the variance will be the sum of the mean of the velocity 
distribution and its variance, or 

In Fig. 2 the solid gray lines are the robust estimates 
generated with 10 and 100 neurons. Notice that in the 10 
neuron case, unlike the linear filter, the robust decoder is 
able to suppress the effect of noise during the middle of the 
movement. In the 100 neuron case, the algorithm is still useful, 
but its effect is smaller. 

111. SIMULATION RESULTS 
Figure 4 shows the performance of the robust HMM decoder 

relative to that of the basic linear filter as the number of 
neurons available increases. The dotted lines in the figure 
represent the average error of reconstructions of simulated 
trajectories (generated using the minimum jerk model of [7] 
with additional noise added in the velocity domain). The solid 
lines represent the average error of reconstructions of actual 
trajectories captured on the infrared tracking system of our 
collaborators. (A subset of these are depicted in Fig. 1.) In 
both cases, neural signals are generated randomly using the 
previously described stochastic model. While we have used the 
term “trajectory” interchangeably to represent the time courses 
in velocity and position spaces, it is important to note that the 
error metric presented in Fig. 4 is the average square distance 
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Fig. 4. Decoder performance as number of neurons available increases 

between the intended and reconstructed arm positions, because 
this is most relevant to the patient. 

The dynamic range and peak velocity of the actual trajec- 
tories is higher than that of the simulated ones. As a result, 
the linear filter reconstructions of these trajectories have, on 
average, less error. Furthermore, because the experimentally 
gathered arm trajectories have considerably more variation, 
and limited data with which to train, the robust trajectory 
estimates have higher error than those corresponding to simu- 
lated reaches. Despite this, even on actual arm trajectories, 
robust decoding results in an average of 25 percent less 
error (70 percent for the simulated movements). An alternate 
performance metric would be the number of neurons required 
for useful performance. The endpoints ranged from 50 to 
140 mm in extent; thus, we can define “acceptable” average 
trajectory error as less than 10 percent of the final endpoint, 
or about 10 mm (100 mm2 average square error). In this case, 
for the actual arm trajectories, the typical linear filter approach 
would require about 75 neurons. The robust decoder needs 
only about SO! In the case of the simulated trajectories, the 
situation is even more extreme 30 neurons compared to 90 for 
the linear filter approach. 

IV. CONCLUSION 

1 Using an appropriate model as a prior for decoding reach- 
ing movements is clearly preferable to movement-ignorant 
methods in almost every situation. The technique we present 
for combining the outputs of a HMM that has been trained 
to represent typical reaching movements is a novel way of 
achieving this goal. The performance increase, an average of 
25 percent reduction in error, or a one-third reduction in the 
required number of neural signals (70 percent and two-thirds 
for the larger data set of simulated movements), highlights the 
utility of this technique. Furthermore, our method’s scalability 
and computational efficiency is an improvement over the 
maximum likelihood method presented in [7]. 

We have modeled trajectories using a HMM with little 
discussion of the primary assumption behind the technique, 

that the hidden process has first-order Markov characteristics. 
It has been shown that variation in endpoint-directed move- 
ments is larger in dimensitins that do not affect the endpoint 
error than those dimensions which do. Thus, for example, 
higher velocity early in a movement may be counteracted with 
lower velocity later in order to maintain endpoint accuracy. 
This type of relationship violates the Markov assumption if 
our models consider only the velocity domain. However, in 
general, we expect to find that an intelligent choice of the state 
variablets) can account for such variation while still providing 
the computational efficiency that the HMM structure allows. 

It was suggested earlier that a reduction to one dimension 
and simple velocity tuned neurons can be made without loss of 
generality. In this work, wt: presented the problem of estimat- 
ing the mean of the a posleriori density P r  (vt I fm) because 
of its convenience. Extending the model to reconstruct multi- 
dimensional trajectories can be accomplished by instead using 
the a posteriori density I’r (xt I fm), where xt is a vector 
representing physical state. including multiple dimensions and 
relevant derivatives. The result, which also incorporates a 
model of arm dynamics, becomes a form of dynamic Bayesian 
network for which similar, but more complex, estimation 
techniques exist. 

Finally, one consequence of using only one-dimensional 
trajectories is an illusory increase in performance compared 
to the two-dimensional results referenced earlier. Because the 
second and third dimension are essentially independent of the 
first, an additional set of neurons are required to decode them. 
Thus, the robust decoding scheme is quite relevant to current 
interface systems as the regime in which its performance 
dramatically exceeds that of current methods contains the 
range of current electrode technology. 
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